自训Transformer模型:识别图像是否由AI生成?


背景

随着AI生成图像技术的迅猛发展,特别是生成对抗网络(GANs)和深度学习的不断进步,生成的图像变得越来越逼真。

这项技术不仅催生了许多创新应用,也带来了潜在的风险和挑战。

Transformer模型在图像识别中的作用

1、特征学习能力:Transformer模型具有强大的特征提取和表示能力,能够从图像中学习到细微的特征差异,识别出AI生成图像与真实图像之间的细微区别。

2、上下文理解:与传统的卷积神经网络(CNN)相比,Transformer模型更擅长捕捉图像中的全局上下文信息,使其在识别AI生成图像时,尤其在细节和纹理方面,表现得更加精准。

3、适应性强:通过预训练和微调,Transformer模型能够适应各种图像生成技术,保持高效的识别能力,即便面对不断进化的AI生成技术。

以下是一个利用Transformer模型来识别图像是否由AI生成的例子。

数据集

类别 训练集数量 测试集数量
FAKE 50,000 10,000
REAL 50,000 10,000
总计 100,000 20,000

自训Transformer模型:识别图像是否由AI生成?

完整步骤

1、导入包

  1. import numpy as np
    from datasets import load_dataset
    import torch
    from transformers importViTFeatureExtractor
    from transformers importTrainingArguments
    from transformers importTrainer
    import tensorflow as tf
    from tensorflow.keras.preprocessing.image importImageDataGenerator
    from transformers importViTForImageClassification, default_data_collator
    from torch.utils.data importDataLoader,Dataset
    import os
    from PIL import Image

2、图像进行预处理

  1. from torch.utils.data importDataset
    from PIL importImage
    import os
    import torch

    classCustomImageDataset(Dataset):
    def __init__(self, img_dir, feature_extractor):
    """
            初始化数据集。
            :param img_dir: 包含图像的根目录路径。应包含两个子目录:'REAL' 和 'FAKE'。
            :param feature_extractor: 用于图像预处理的特征提取器。
            """
    self.img_dir = img_dir
    self.img_labels =[]#存储图像标签的列表
    self.img_files =[]#存储图像文件路径的列表
    self.feature_extractor = feature_extractor  # 特征提取器
    self.label_mapping ={'REAL':1,'FAKE':0}#标签映射字典

    # 遍历 'REAL' 和 'FAKE' 目录
    for label_dir in['REAL','FAKE']:
                dir_path = os.path.join(img_dir, label_dir)#获取每个子目录的路径
                files = os.listdir(dir_path)#获取目录中的所有文件
    for file in files:
    # 将每个文件的完整路径添加到 img_files 列表
    self.img_files.append(os.path.join(dir_path, file))
    # 将每个文件的标签添加到 img_labels 列表
    self.img_labels.append(self.label_mapping[label_dir])

    def __len__(self):
    """
            返回数据集中图像的数量。
            :return: 数据集中图像的总数。
            """
    return len(self.img_files)

    def __getitem__(self, idx):
    """
            根据给定的索引返回图像和标签。
            :param idx: 图像的索引。
            :return: 一个字典,包含图像的张量 'pixel_values' 和标签的张量 'labels'。
            """
            img_path =self.img_files[idx]#获取图像路径
            image =Image.open(img_path).convert("RGB")#打开图像并转换为 RGB 格式
            label =self.img_labels[idx]#获取对应的标签
            features =self.feature_extractor(images=image, return_tensors="pt")#使用特征提取器处理图像
    # 确保输出是字典格式,并移除多余的维度
    return{"pixel_values": features['pixel_values'].squeeze(),"labels": torch.tensor(label)}

3、加载了一个本地保存的Vision Transformer模型和特征提取器,设置设备(GPU 或 CPU),并创建了用于训练和测试的数据集和数据加载器。

  1. from transformers importViTFeatureExtractor,ViTForImageClassification
    from torch.utils.data importDataLoader
    import torch

    # Vision Transformer (ViT) 模型在 ImageNet-21k(1400 万张图像,21,843 个类别)上以 224x224 分辨率进行预训练。
    model_id ='google/vit-base-patch16-224-in21k'

    # 定义本地模型文件路径
    model_path ='../model'

    # 加载特征提取器
    feature_extractor =ViTFeatureExtractor.from_pretrained(
        model_path,#使用本地路径
        local_files_only=True# 仅使用本地文件
    )

    # 设定设备(GPU 或 CPU)
    device = torch.device('cuda'if torch.cuda.is_available()else'cpu')

    # 加载分类器模型
    model =ViTForImageClassification.from_pretrained(
        model_path,#使用本地路径
        num_labels=2,#设置分类标签的数量
        local_files_only=True# 仅使用本地文件
    )

    # 将模型移到所选设备(GPU 或 CPU)
    model.to(device)

    # 创建数据集
    train_dataset =CustomImageDataset(img_dir='../dataset/train', feature_extractor=feature_extractor)
    test_dataset =CustomImageDataset(img_dir='../dataset/test', feature_extractor=feature_extractor)

    # 创建数据加载器
    train_loader =DataLoader(train_dataset, batch_size=16, shuffle=True)#训练集的数据加载器
    test_loader =DataLoader(test_dataset, batch_size=16, shuffle=False)   # 测试集的数据加载器

4、打印当前设备,查看使用的设备类型。

  1. # 打印当前设备
    print("当前设备:", device)

5、设置了训练模型的参数,并使用这些参数初始化了一个Trainer实例

  1. from transformers importTrainer,TrainingArguments, default_data_collator

    # 配置训练参数
    training_args =TrainingArguments(
        per_device_train_batch_size=4,#每个设备上训练的批次大小为4
        evaluation_strategy="epoch",#每个训练周期结束时进行评估
        num_train_epochs=4,#总共训练4个周期(epochs
        save_strategy="epoch",#每个训练周期结束时保存模型
        logging_steps=10,#每10个训练步骤记录一次日志
        learning_rate=2e-4,#学习率设置为0.0002
        save_total_limit=2,#保留最新的2个模型检查点,删除旧的检查点
        remove_unused_columns=False,#不移除数据集中未使用的列
        push_to_hub=False,#不将模型推送到HuggingFaceHub
        load_best_model_at_end=True,#在训练结束时加载性能最佳的模型
        output_dir="./outputs",#模型和其他输出保存到指定目录
        use_cpu=False# 不强制使用 CPU,默认使用 GPU(如果可用)
    )

    # 初始化 Trainer
    trainer =Trainer(
        model=model,#使用之前定义的模型
        args=training_args,#使用上面定义的训练参数
        train_dataset=train_dataset,#训练数据集
        eval_dataset=test_dataset,#评估数据集
        data_collator=default_data_collator,#数据整理器,用于处理数据批次
        compute_metrics=None,#计算指标的函数,此处不计算任何指标
    )

6、开始训练

  1. trainer.train()

时间很长。

自训Transformer模型:识别图像是否由AI生成?

7、将trainer实例中的模型(包括模型的权重和配置)保存到指定的目录。

  1. trainer.save_model("./outputs/final model")

自训Transformer模型:识别图像是否由AI生成?

8、开始验证

  1. from transformers importAutoFeatureExtractor,AutoModelForImageClassification
    import os
    import torch
    from PIL importImage
    import matplotlib.pyplot as plt
    plt.rcParams['font.sans-serif']=['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus']=False

    # 使用绝对路径
    model_path = os.path.abspath("D:\MY\8-m\final model")

    # 尝试加载特征提取器和模型
    try:
        feature_extractor =AutoFeatureExtractor.from_pretrained(model_path, local_files_only=True)
    exceptOSErroras e:
    print(f"加载特征提取器时出错: {e}")

    try:
        model =AutoModelForImageClassification.from_pretrained(model_path, local_files_only=True)
    exceptOSErroras e:
    print(f"载模型时出错: {e}")

    # 设备设置
    device = torch.device("cuda"if torch.cuda.is_available()else"cpu")
    model.to(device)

    # 加载和预处理图像
    image_path ='潘展乐.png'
    image =Image.open(image_path).convert("RGB")
    inputs = feature_extractor(images=image, return_tensors="pt")
    pixel_values = inputs['pixel_values'].to(device)

    # 执行预测
    model.eval()
    with torch.no_grad():
        outputs = model(pixel_values)

    # 解析预测结果
    logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    predicted_label ='真实'if predicted_class_idx ==1else'AI生成'

    # 打印预测标签
    print(f"预测标签: {predicted_label}")

    # 展示图像和预测结果
    plt.imshow(image)
    plt.axis('off')
    plt.title(f"预测标签: {predicted_label}")
    plt.show()

自训Transformer模型:识别图像是否由AI生成?

自训Transformer模型:识别图像是否由AI生成?

over,模型的准确率还是很棒的。

前沿技术新闻资讯

大模型知识入门

2025-2-13 7:49:27

前沿技术新闻资讯

网易伏羲:智能体驱动 未来可期 | 《天堂硅谷》杂志报道

2025-2-13 8:34:59

0 条回复 A文章作者 M管理员
欢迎您,新朋友,感谢参与互动!
    暂无讨论,说说你的看法吧
购物车
优惠劵
搜索